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ABSTRACT

Over half a billion smartphonesworldwide are now capable ofmeasuring atmospheric pressure, providing a

pressure network of unprecedented density and coverage. This paper describes novel approaches for the

collection, quality control, and bias correction of such smartphone pressures. AnAndroid app was developed

and distributed to several thousand users, serving as a test bed for onboard pressure collection and quality-

control strategies. New methods of pressure collection were evaluated, with a focus on reducing and

quantifying sources of observation error and uncertainty. Using a machine learning approach, complex re-

lationships between pressure bias and ancillary sensor data were used to predict and correct future pressure biases

over a 4-week period from 10 November to 5 December 2016. This approach, in combination with simple quality-

control checks, produced an 82% reduction in the average smartphone pressure bias, substantially improving the

quality of smartphone pressures and facilitating their use in numerical weather prediction.

1. Introduction

Over the past decade, increasing computational re-

sources have enabled the development of high-resolution

convection-allowing numerical weather prediction (Pinto

et al. 2015; Seity et al. 2011; Baldauf et al. 2011; Lean et al.

2008). Although, advances in model resolution have fos-

tered more realistic representations of convective systems,

they have not produced improvements in forecast location,

timing, and intensity (Weisman et al. 2008). Such forecast

deficiencies have been at least partly attributed to a lack of

spatial and temporal observation density (Mass et al. 2002;

Roebber et al. 2002, 2004; Gallus et al. 2005; Sun et al.

2014). Recent studies have demonstrated the value of

surface observation density for convection-allowing

models (Madaus et al. 2014; Sobash and Stensrud 2015),

further motivating efforts to ameliorate this deficiency.

Onemethod of expanding surface observing networks

to meet the demands of increasing model resolution is

through crowdsourcing, retrieving information from

many people, typically through the Internet. Increases in

the number of Internet-connected devices with envi-

ronmental sensors, combined with growth in personal

weather station ownership (http://www.wxqa.com/),

have facilitated an expansion of crowdsourcing efforts in

the atmospheric sciences (Muller et al. 2015). Recent

research has examined crowdsourced temperature ob-

servations from Nutator personal weather stations

(http://www.netatmo.com), which have been used to

quantify the urban heat island in London, United

Kingdom (Chapman et al. 2017), and Berlin, Germany

(Meier et al. 2017). Other crowdsourcing studies have

focused on smartphones, which are now used by nearly

one-third of the world’s population (Newzoo 2017).

Sensor data from smartphones have been used to esti-

mate temperature distributions (Overeem et al. 2013;

Droste et al. 2017), precipitation type and amount

(Elmore et al. 2014; De Vos et al. 2017), and surface

pressure (Mass and Madaus 2014; Kim et al. 2015; Kim

et al. 2016; Hanson and Greybush 2016; Madaus and

Mass 2017).

Crowdsourced observations from smartphones offer

the potential of extraordinary density and spatial cov-

erage, which could help resolve convective-scale phe-

nomena and enhance high-resolution numerical weather

prediction. This potential is demonstrated in Fig. 1, which

displays a 2Dhistogramof pressure observations, retrieved

over a 1-h period, from smartphones (acquired with the

Weather Channel app) and the Meteorological Data As-

similation Ingest System (MADIS; Miller et al. 2005).

MADIS includes observations from the aviation routine

weather report (METAR) network, the Citizen Weather

Observer Program (http://www.wxqa.com/), and dozens of

local mesoscale surface observing networks (mesonets).Corresponding author: Callie            McNicholas, cmcnich@uw.edu
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The median observation density of smartphone pressures

is approximately two orders ofmagnitude greater than that

of the MADIS network. In portions of the northeastern

United States, smartphone pressure density exceeded

20000 observations per 20km2. The density of smartphone

pressures in Fig. 1 represents a fraction of the potential

total, since theWeather Channel app is not installed on

all smartphones and not all smartphones using the

Weather Channel app contribute pressure observa-

tions each hour. While crowdsourcing pressures from

millions of smartphones could vastly improve the

density and extent of surface pressure observations,

substantial data-quality challenges remain, which is an

issue that is explored below.

A major question is whether increased density of

pressure observations results in improved analyses and

forecasts. The first discussion of the potential of smart-

phone pressures for numerical weather prediction was

provided byMass andMadaus (2014), which included an

example of smartphone pressure assimilation during a

convective event in eastern Washington State. Madaus

et al. (2014) found a monotonic decrease in domain-

averaged analysis error with increasing density of pres-

sure observations from mesonets. They also found that

additional observational density improved short-term

forecasts of six frontal passage events and one conver-

gence zone event in Washington State. Hanson and

Greybush (2016), performing idealized simulations with

FIG. 1. A 2D histogram of surface pressure observation count between 0000 and 0100 UTC 15 Sep 2016 for (top) Weather Channel

Android smartphones and (bottom)MADIS stations. MADIS stations includeMETAR and IntegratedMesonet stations passing the first

three stages of MADIS QC. Observations are binned into square grids with dimensions 0.258 3 0.258 (approximately 203 20 km2 at 458N
latitude).
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synthetic smartphone observations, concluded that if

observational uncertainty is well represented, then

smartphones pressures can improve model forecasts of

surface variables. In the real world, quantifying obser-

vational uncertainty for smartphone pressures is com-

plicated by smartphone pressure sensor bias and errors

of representativeness.

Madaus and Mass (2017) assimilated smartphone pres-

sures from thePressureNet (http://www.pressurenet.io/) and

WeatherSignal (https://www.facebook.com/Weathersignal)

mobile applications during a 72-h convectively active

period over the northeastern United States. Validity,

statistical, and spatial-consistency quality-control (QC)

checks were used to improve data quality, with only one-

third of smartphone pressures passing all QC checks.

Overall, smartphone pressure assimilation reduced the

median 1-h forecast error for surface pressure and 10-m

wind by only 0.08 hPa and 0.05ms21, respectively. In

contrast, the median 2-m temperature 1-h forecast error

increased by 0.35K, with the degradation of tempera-

ture forecasts attributed to a lack of observation quality.

Nearly half (;45%) of the assimilated smartphone

pressures degraded pressure analyses at the location of

assimilation, when verification was performed with the

assimilated observations.

The study described below builds upon the work of

Madaus and Mass (2017) by quantifying and reducing

errors in smartphone pressure data. Sources of such er-

rors result from the following:

1) Poor collection approaches: improper pressure col-

lection procedures that do not account for sensor

internal filtering.

2) Inaccurate metadata: for example, inaccurate loca-

tion information can result in elevation error, espe-

cially in regions of complex terrain.

3) Sensor bias: systematic sensor errors, resulting

from a variety of origins, including soldering issues

during sensor installation.

4) User behavior: including smartphone speed and

locations above/below ground level.

The first goal of this study is to reduce such errors

through quality assurance (QA) and bias-correction

procedures so that smartphone pressures can be used

to describe convective-scale phenomena and enhance

convection-allowing numerical weather prediction. An

important innovation is the exploration of the potential

of machine learning for bias evaluation and correction.

A second goal is to evaluate the feasibility of crowd-

sourcing and quality-controlling pressures frommillions

of smartphones, since pressure collection from widely

used mobile applications such as The Weather Channel

app is now a possibility. To achieve each of these goals, a

free Android-based smartphone app (uWx; http://www.

cmetwx.com) was developed as a test bed for evaluating

collection and QA strategies for smartphone pressures.

2. Background

a. Smartphone pressure sensors

Beginning in 2012 smartphone manufacturers began

installing pressure sensors to provide support for global

positioning system (GPS) location services, enabling a

faster and more precise determination of vertical posi-

tion. These sensors have enabled new mobile applica-

tions, such as indoor navigation and calorie consumption

calculation (Bosch Sensortec 2012). Over the past five

years, the number of smartphone models with pressure

sensors has grown substantially (now over 180), many

produced by high-end manufacturers, such as Samsung

and Apple. Smartphone pressure sensors are micro-

electromechanical (MEMS) devices composed of a di-

aphragm formed on a silicon substrate that bends with

applied pressure. Under applied pressure the bending of

the silicon substrate causes a deformation in the crystal

lattice structure of the diaphragm. This deformation

initiates a change in the electrical resistance of the di-

aphragm, which is used to determine pressure variations.

A typical pressure sensor found in many popular

smartphones is the Bosch BMP280, which has an abso-

lute accuracy of 61 hPa and a relative accuracy of

60.12 hPa (Bosch Sensortec 2018). Since pressure sen-

sors like the BMP280 are highly sensitive and suscepti-

ble to random errors and noise, oversampling and an

internal infinite impulse response (IIR) filter are often

used to suppress high-frequency noise caused by wind,

doors–windows opening–closing, and other transient

effects. Similar filtering techniques are used in other

pressure sensors, such as the DPS310 digital pressure

sensor (Infineon 2016).

b. uWx—Pressure collection App

To provide a test bed for evaluating a variety of col-

lection and quality-control procedures for smartphone

pressures, an Android-based smartphone app, uWx, was

developed. This app is free to download and available in

the Google Play store. In the first 6 months after its

initial release date, uWx collected more than 15 million

pressure observations from over 3000 unique smart-

phones, with the majority in the Pacific Northwest.

Approximately 90% of uWx users contribute pressures

at least once per hour. The frequency of pressure col-

lection is user adjustable and can vary from 5 to 60min,

with a default determined by the battery capacity of the

smartphone. Specifically, the frequency of pressure
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collection by uWx is halved when battery life is under

25%. The pressure collection frequency is increased to

every 10 (5) min if a smartphone is in a location under a

National Weather Service–issued severe weather watch

(warning). Although observation frequency is periodi-

cally reduced to conserve power, the median period

between pressure observations for all uWx users is

22min. Subhourly pressure collection is accomplished

without sacrificing battery life. On a typical Android

device, uWx would take approximately 150 h to drain a

3000-mA h battery. As a testament to the efficiency of

uWx, the app has maintained a core of approximately

1000 pressure-collecting users since its initial public

release.

3. Methodology

Before discussing methodology, two definitions are

provided for clarity. In this study, a pressure measure-

ment is defined as an instantaneous atmospheric pres-

sure value reported by the smartphone pressure sensor.

A pressure observation is an average of a collection of

pressure measurements retrieved from a smartphone

in a single session.

a. Pressure collection and quality assurance

In the PressureNet app and early versions of uWx,

location retrieval was performed prior to pressure re-

trieval. Once a location estimate was retrieved, the first

available pressure measurement was saved and uploa-

ded as a pressure observation to the app server. How-

ever, retrieving the first pressure measurement fails to

account for the internal IIR filtering performed by the

pressure sensor. Common smartphone pressure sensors

like the BMP280 employ an IIR filter of the following

form (Bosch Sensortec 2018):

x
f
(t)5

[x
f
(t2 1)3 (k2 1)1 x(t)]

k
. (1)

Filtered data xf(t) is derived from a weighted average of

previously filtered data xf(t 2 1) and current unfiltered

data x(t). In Eq. (1) the filter coefficient k is a unitless

constant that modulates the weight of the last reported

measurement. In the Android operating system, the

filter coefficient is set to four. Between retrievals the

sensor operates in sleep mode in which pressure mea-

surements are not made. When pressure retrieval be-

gins, the sensor switches to measurement mode and the

last measured pressure is used to initialize the IIR filter.

The step response [e.g., a response to change in

pressure between two smartphone pressure–altimeter

observations (SPOs)] of different BMP280 filter settings

is displayed in Fig. 2. Based on this figure, if the filter

coefficient is four and the step (change) in pressure be-

tween two SPOs is 5 hPa, retrieving the first pressure

measurement would result in an error equal to 75% of

the pressure change (i.e., 3.75 hPa). Since meteorologi-

cal conditions, smartphone elevation, and observation

frequency can vary substantially, the magnitude of the

pressure change between observations has a wide range.

For this reason it is good practice to extend the sensor

listening period to ensure a pressure observation is un-

influenced by IIR filtering.

uWx pressure retrieval is performed in the back-

ground every 5–60min, depending on the set frequency

of pressure collection. At the start of pressure acquisi-

tion, the pressure sensor is called and measurements are

recorded for 15–40 s. The first 10 s of pressure retrieval

allow the sensor to ‘‘spinup’’ and account for internal fil-

tering. Pressure measurements are recorded during an

additional 5–30-s period while location estimate(s) are

retrieved. In uWxpressuremeasurements are reported at a

frequency of 20Hz to balance power consumption and

measurement frequency. A pressure observation is com-

puted by averaging the last 50 pressure measurements re-

ported by the sensor. An estimate of sensor noise is

retrieved by computing the standard deviation of the last

50 pressure measurements. For additional details on mo-

bile pressure collection, see Aeolus (https://github.com/

cmac994/aeolus), a sampleAndroid app that demonstrates

basic pressure collection procedures implemented in uWx.

b. Location retrieval

Android smartphones can retrieve location updates

from three sources: GPS, Wi-Fi networks, and cellular

networks. It is common for apps, like PressureNet, to

exclude the GPS from location retrieval, using instead

location updates from Wi-Fi and cellular networks.

When Wi-Fi networks are inaccessible, location esti-

mates are retrieved from the cellular network, which can

lead to large location errors. In the Android operating

system, location accuracy is defined by the radius of 68%

confidence, with location errors assumed to be random

and normally distributed. Location estimates from the

cellular network can have location accuracies ranging

from a few hundred meters to several kilometers. In

contrast, location estimates from the GPS and Wi-Fi

networks typically have location accuracies less than

60m. Reducing location error is important, since posi-

tion errors result in ground elevation errors. To reduce

horizontal location errors, uWx mandates the use of the

GPS. The GPS receiver is called and set to operate in

high-accuracy/high-power mode. Network location

providers (Wi-Fi and cellular) are also called to assist

and hasten location retrieval.
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In uWx ground elevation estimates are found by

combining location information (latitude, longitude)

with terrain information from a U.S. Geological Survey

digital elevation model (DEM), which has a resolution

of 30m and an RMS error of 1.55m (Gesch et al. 2014).

An estimate of elevation uncertainty is computed from the

DEM by taking two standard deviations of the nine DEM

points closest to the smartphone. The elevation retrieved

from the DEM is used to compute altimeter setting

(pALT), which is sea level pressure derived assuming the

U.S. Standard Atmosphere, 1976 (COESA 1976):

p
ALT

5 (k
2
z
sfc
1 p

k1
sfc)

1/k1 ,

where k
1
5

g
s
R

d

g
and

k
2
5

p
k1
B 3 g

s

T
B

. (2)

In Eq. (2), the dry air gas constant and acceleration due

to gravity are denoted as Rd (m
2 s22K21) and g (m s21),

respectively. Variables gs, pB, and TB, represent the

lapse rate (Km21), sea level pressure (Pa), and sea level

temperature (K) of the U.S. Standard Atmosphere

(COESA 1976; Duchon 1976). As Eq. (2) demonstrates,

elevation errors result in pressure errors, since eleva-

tion is used to reduce pressure to sea level. When a

smartphone is indoors and most likely to be above or

below ground, the GPS receiver often fails to return an

elevation. Signal attenuation indoors can prevent the

receiver from achieving a lock on at least four satellites,

the number required to retrieve a 3D position fix. Even

if an elevation is retrieved from the GPS, the vertical

accuracy of GPS is notoriously poor (typically 2–3 times

worse than the horizontal accuracy). For this reason,

QA procedures in uWx focus on reducing horizontal lo-

cation errors, since they contribute to errors in pressure

and are simpler to correct than vertical location errors.

c. Bias estimation

In uWx bias estimation is performed on a remote app

server, using neighborhood altimeter observations from

METARs and mesonets in the MADIS network.

Nearby MADIS observations are placed into four

quadrants spanning the four cardinal directions around

the SPO. Interpolation of observations to the smart-

phone location is performed if at least three quadrants

contain two observations within 300 km. A piecewise

cubic spline is used to interpolate nearby MADIS ob-

servations to the time of the SPO. An inverse distance

weighting technique then spatially interpolates nearby

MADIS observations to the location of the SPO (Shepard

1968). Cross validation is used to estimate an appropriate

power factor for the interpolation, and jackknifing is per-

formed to estimate the uncertainty of the interpolation.

In jackknifing each observation is left out during the

FIG. 2. Step response of a smartphone pressure sensor with an IIR filter and a filter coefficient k,

typically hard coded into the sensor device driver.
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interpolation, producing a ‘‘jackknifed’’ estimate of the

altimeter setting at the smartphone location. A synthetic

observation is computed by averaging the jackknifed es-

timates. The difference between this synthetic observation

and the SPO is defined as the pressure bias and is archived

for later postprocessing. The uncertainty of the pressure

bias is estimated by two standard deviations of the jack-

knifed estimates. The pressure bias represents the sum of

sources of uncertainty, such as sensor bias and elevation

errors. To quantify the magnitude and variance of each of

these sources of uncertainty, the pressure bias must be

decomposed.

d. Clustering analysis

Most smartphones spend considerable time at com-

mon locations, such as homes and workplaces, which can

serve as de facto observation sites. This fact can be used

to gain insights regarding pressure sensor biases. At fre-

quented locations elevation errors are consistent, since

users tend to spend significant amounts of time at specific

locations (e.g., bedroom, office, etc.) where their elevation

above/below ground level is fixed. Evaluating the distri-

bution of pressure bias, at frequented locations, can help

reveal the nature of pressure sensor bias, since variance in

pressure bias due to elevation errors are minimal. To test

this idea, a datamining clustering technique, density-based

spatial clustering of applications with noise (DBSCAN;

Ester et al. 1996), was applied. DBSCAN can identify

arbitrarily shaped clusters and is robust to outliers.

To test this approach, DBSCAN clustering analy-

sis, performed with 1426 uWx SPOs retrieved from

the developer’s smartphone between 15 August and

15 November 2016, yielded two clusters corresponding

to the developer’s home and work locations. SPOs re-

trieved at the home location were taken from a ground-

level apartment, while SPOs retrieved at the work location

were taken mostly at a sixth floor office, approximately

16m above ground level. Figure 3 highlights the distri-

bution of pressure bias for SPOs retrieved at both fre-

quented locations (i.e., home and work) and at all

locations. Since SPOs within the home cluster were re-

trieved at ground level, the magnitude of the sensor bias

is well approximated by the median pressure bias at the

home cluster (1.51 hPa). When the smartphone was

within the work cluster, 16m above ground level, the

pressure bias decreased by 2.08 hPa, from 1.51 to

20.57 hPa, with the 16-m vertical elevation error com-

pensated by the positive (1.51 hPa) bias of the pressure

sensor. For home and work clusters, the distribution of

pressure bias has less spread than for all locations, with

the interquartile range (IQR) of pressure bias de-

creasing by an order of magnitude, from 2hPa (all lo-

cations) to 0.2 hPa, at home/work. These results suggest

that the sensor bias of the developer’s smartphone was

FIG. 3. Distribution of pressure bias for the developer’s smartphone for various DBSCAN

cluster locations—all locations, home, and work—between 15 Aug and 15 Nov 2016. Median

pressure bias is displayed in each box (white bisecting line). A total of 1426 SPOs contributed to

this analysis, with 550 SPOs retrieved at the work and 806 SPOs retrieved at home locations.
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relatively unchanged during the 3-month period ana-

lyzed. While one smartphone is not representative of all

phones, DBSCAN analyses performed on other smart-

phones (not shown) consistently show a significant de-

crease in the variance of pressure bias at clustered

locations, suggesting that smartphone sensor biases are

generally conservative in time.

e. Pressure change retrieval

In previous work by Madaus and Mass (2017),

smartphone pressure change observations (SPCOs)

were computed during postprocessing without the aid of

unique identifiers. Observations collocated in space and

separated in time were used to compute pressure

change. There was no consideration of location accu-

racy, local terrain variance, and smartphone motion,

since such information was not available. To improve

the quality of SPCOs, pressure change estimation in

uWx is performed only when a smartphone is not ex-

periencing any substantial motion (e.g., while walking,

biking, sitting in amoving vehicle). Substantial motion is

detected by a software-based significant motion sensor,

which utilizes data from an accelerometer to determine

small-scale phone motions not resolved by the GPS

(Android 2017a). To further supplement the GPS and

significant motion sensor, battery information, such as

charging status and charging state, are also collected by

uWx (Android 2017b). Phones charging more quickly

via an ac adapter (e.g., 1.5-A wall charger) are likely

stationary, while smartphones charging more slowly

through aUSBcharger (e.g., 0.5-Acar charger)maynot be.

Combiningdata from the significantmotion sensor, battery,

and GPS enables a more robust evaluation of smartphone

movement. Limiting the retrieval of SPCOs to stationary

smartphones helps filter out spurious estimates of pressure

change unrelated to atmosphericmotions. Tables 1a and 1b

outline the requirements for SPCO estimation in uWx.

Pressure change is computed from stationary smartphones

over fixed intervals of time, typically over 15min. When

elevation uncertainty is small, the requisite location accu-

racy and the maximum allowable distance between obser-

vations is relaxed.

f. Bias correction using random forest machine
learning

Predicting and correcting pressure biases, which

reflect a complex relationship between sensor values

and 3D location, demands a dynamic approach, capable

of adapting to user-driven variability. For this reason a

machine learning approach to bias correction was tested

to determine whether pressure biases could be predicted

and corrected using data derived from smartphone

sensors and GPS hardware.

While a variety of machine learning algorithms were

initially evaluated for predicting smartphone pressure

biases, the random forest algorithm (Breiman 2001) was

ultimately selected for pressure bias prediction because

of its efficiency, simplicity, and diagnostic capabilities.

Random forests utilize a form of ensemble decision tree

learning in which learning is achieved by subsetting–

splitting input data based on information gain or variance

reduction until further splitting is not possible or provides

no added value. Random forests overcome the limita-

tions of decision trees, which often lack robustness and

suffer from overfitting, by implementing ‘‘bagging’’ or

bootstrap aggregation (Breiman 1996) and the random

subspace method (Ho 1998). In a random forest, an en-

semble of decision trees is created by selecting random

samples with replacement from a training dataset.Within

each tree, at each candidate split, the randomly sampled

variable (feature) that minimizes the mean-squared error

of the prediction is chosen as the feature to split. By

employing bagging (randomizing observations) and the

random subspace method (randomizing features), ran-

dom forests produce an ensemble of uncorrelated trees

that, when averaged, produce predictions with small

mean-squared error and low bias.

The ensemble nature of random forests precludes

direct interpretation of the tree learning process. Nev-

ertheless, random forests can be used to evaluate the

importance of input features. Consider a feature f. For

each node in a tree that splits on f, the variance re-

duction of the node is weighted by the number of

training observations that reached the node. This

weighted variance reduction estimate is summed for all

nodes in the tree that split on f, providing an estimate of

TABLE 1. (a) Temporal and (b) spatial prerequisites for pressure

change estimation. In (b) Estd refers to elevation uncertainty,

which is defined as two standard deviations of the nineUSGSDEM

grids closest to the smartphone.
TABLE 1a.

Pressure change (min)

Acceptable time difference

between pressure observations (min)

15 10–20

30 20–30

60 50–70

180 165–195

360 345–375

720 705–735

TABLE 1b.

Estd (m)

Max location

accuracy (m)

Max acceptable

distance (m)

0–1 60 120

1–2 45 90

2–3 30 60

.3 30 30
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the importance of f for a single tree. This process is re-

peated for all trees in the ensemble so that an average

across the ensemble of trees can be computed, pro-

ducing an estimate of the importance of f for the entire

random forest. In the examination of random forests,

feature importance is used to discern which features

contribute the most to pressure bias predictions.

In this study random forests were trained on data re-

trieved between 15 August and 9 November 2016. Since

the behavior of each phone is unique, a random forest

was generated for each smartphone. To balance per-

formance with computational cost, random forests were

initialized with 100 trees. Smartphones with fewer than

50 observations during the 12-week period were not

used for bias correction and discarded. Random forests

were trained only on SPOs with location accuracies

under 60m and absolute pressure biases less than

10 hPa. Limiting random forest training to SPOs with

modest pressure biases prevented random forests from

being trained with SPOs retrieved from aircraft and

high-rise buildings. Higher thresholds were evaluated

and found to degrade random forest performance.

The input matrix for each random forest included 14

variables collected in real time by uWx (Table 2). These

variables are described as features, in accordance with

the lexicon of the machine learning community. Once

trained, random forest bias predictions were produced

for uWx observations retrieved between 10 November

and 5 December 2016. The predicted pressure bias

was subtracted from uWx SPOs to produce a debiased

SPO. MADIS altimeter setting estimates, computed

using the interpolation approaches noted above, were

used to compute verification pressures at the smart-

phone locations. The difference between the pre-

dicted and true pressure bias is referred to as the bias

prediction error.

Machine learning with random forests allows pressure

biases to be predicted and corrected in real time, using

only smartphone sensor and GPS data. One conse-

quence of using random forests is that pressure bias

predictions will not exceed the range of pressure bias

observed during training, which is at most610hPa. The

magnitude of SPO bias is unknown prior to bias

correction. Thus, SPOs cannot be filtered prior to bias

correction and some SPOs with large biases that exceed

the range of bias seen during training will undergo bias

correction. Since random forests cannot adequately

predict pressure bias in such situations, QC techniques

have been developed to remove outliers from bias-

corrected observations.

The first stage of QC employs simple validity checks

to remove prominent outliers (i.e., altimeter setting ,
890 hPa, or . 1100hPa). The second stage involves a

statistical check that removes outliers exceeding four

standard deviations from the mean of the observational

dataset. Statistical outlier thresholds are modified to

adjust for skewness using the split-histogram technique

outlined in McNicholas and Turner (2014). The third

and final stage of QC is a spatial consistency check that

utilizes a radial basis function in the form of a thin plate

spline (Duchon 1976). Thin plate splines are ideal for

fitting pressure observations, as they produce smooth

surfaces and lack free tuning parameters. Once a spline

is fit to the observations, outliers are determined by

evaluating Eq. (3):
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If the difference between the spline surface (x̂11) and

SPO (x11) exceeds four standard deviations of G, a

matrix of spline altimeter setting estimates centered on

the grid containing the SPO (x̂11), the SPO is rejected.

TABLE 2. Description of features used to train random forests

(ancillary features are italicized).

Acronym Feature

phoneid Pseudorandom unique identifier generated when

app is first opened

latlon Concatenation of latitude and absolute value of

longitude

lux Illuminance from photodetector (light sensor)

elev Ground elevation from USGS DEM

estd Two standard deviations of the nine nearest USGS

DEM grids

pres Average of last 50 pressure measurements

alts Altimeter setting

pstd Standard deviation of last 50 pressure measurements

acc Location accuracy

speed GPS detected speed

sat Number of GPS satellites used in location fix

fix Did the GPS get a location fix? (Boolean)

loc Was the smartphone indoors or outdoors? (Boolean)

motion Was the significant motion sensor triggered?

(Boolean)
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4. Results

a. Comparison with other pressure collection apps

Previous work by Madaus and Mass (2017) uti-

lized crowdsourced SPOs from the PressureNet and

WeatherSignal apps. PressureNet stopped collecting

SPOs in late 2015, and in August 2016 the Weather

Company began acquiring SPOs using the Weather

Channel app. PressureNet, WeatherSignal, and the

Weather Channel app do not perform in-app QA tech-

niques (on the smartphone). A comparison between

uWx and the three SPO providers is shown in Table 3,

which presents statistics derived from hourly data re-

trieved over a 3-day period from 15 to 18 September

2016. Estimates of pressure change from PressureNet

and the Weather Channel app were computed by col-

lecting observations falling within the time windows

outlined in Table 1a. For two observations falling within

an acceptable time window, an estimate of pressure

change was retrieved only if the distance between the

observations did not exceed 60m and the location ac-

curacy of each observation did not exceed 60m. Since a

unique identifier was not provided by WeatherSignal,

pressure change and observation frequency could not

be computed for that data provider.

Although uWx collects the fewest SPOs, it out-

performs PressureNet, WeatherSignal, and theWeather

Channel app in all other categories. The mean location

accuracy of SPOs collected by uWx is nearly an order

ofmagnitude smaller than themean location accuracy of

SPOs from the other providers. This is a consequence of

uWx mandating the use of the GPS during location re-

trieval. By collecting pressures in the background (even

when the device is offline), uWx can collect SPOs at

nearly 5 times the frequency of the other SPO providers.

As a result over 90% of smartphones in the uWx net-

work submit SPOs every hour. Because of frequent

pressure collection, uWx can retrieve SPCOs from over

90% of smartphones in the network at any given time.

By comparison only 10%–15% of phones, on average,

contribute SPCOs from the PressureNet and Weather

Channel apps. While reduced observation frequency

contributes to this result, the poor yield is primarily a

consequence of their failure to mandate the use of the

GPS when retrieving a location estimate. When the use

of the GPS is not mandated, the primary location provider

can vary over time. This is problematic, since alternating

between accurate (GPS–Wi-Fi) and inaccurate (cellular

network) location estimates often results in the ap-

pearance of smartphone movement, even when the

smartphone is stationary.

b. Pressure change

Since pressure change is not influenced by time-

invariant pressure bias, postprocessing of uWx SPCOs

was not performed. In-app QA procedures were largely

successful in filtering observations unsuitable for pres-

sure change estimation. The success of these procedures

is illustrated in Fig. 4a, which displays a sequence of 1-h

pressure changes collected from uWx smartphones in

real time. In this figure, an isallobaric pressure wave

propagates northward from the southern suburbs of

Portland, Oregon, to Seattle,Washington, between 0600

and 1000 UTC 24 October 2016. The ability of uWx to

capture coherent 1-h pressure change perturbations,

with magnitudes as small as 0.3 hPa, demonstrates the

effectiveness of uWx pressure change collection. Fur-

thermore, uWx 1-h pressure change observations com-

pare well with observations from MADIS mesonet and

METAR analyses (Fig. 4b).

The need for increased spatial and temporal obser-

vation density for resolving convective-scale phenom-

ena and enhancing convection-allowing numerical

weather prediction was a major motivation of this work.

uWx SPCOs demonstrate the ability of smartphones to

capture convective structures. For example, Fig. 5

displays a sequence of 15-min pressure change maps

during a convective event near Seattle, Washington. In

this event uWx SPCOs captured sudden pressure

changes and sharp isallobaric gradients induced by a

convectively driven cold pool and wake low. By the end

of the period (2326 UTC), the leading and trailing edges

of the cold pool were made visible by sharp pressure

rises north of the city and weak pressure rises within and

TABLE 3. Comparison of crowdsourcing pressure apps.

uWx PressureNet WeatherSignal Weather Channel

Phones contributing at least one estimate of

pressure change (each hour; %)

90–95 10–15 — 10–15

Mean location accuracy (m) 60.3 567 471 527

Median location accuracy (m) 21.6 36 36 42

Mean observation frequency (h min) 50 3 31 — 3 24

Median observation frequency (h min) 22 3 20 — 2 18

Phones submitting pressures on an hourly basis (%) 91.6 11.6 — 8.2

Monthly observation count (3 106) 3.5 100 10 2000
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south of the city. The ability of SPCOs to capture the

spatial structure and magnitude of mesoscale (Fig. 4)

and convective (Fig. 5) phenomena demonstrates their

potential as a diagnostic forecasting tool. This is espe-

cially true in developing countries, where smartphone

penetration is high and meteorological assets, such as

surface and radar networks, are sparse or nonexistent.

c. Bias prediction

As outlined above, random forests were trained on

uWx data from 15August to 9November 2016. Over this

period approximately 2325 smartphones contributed

SPOs. Random forests were generated for 1978 smart-

phones that were eligible for bias correction, having

retrieved at least 50 SPOs over the 12-week training

period. These random forests were used to predict and

correct SPO biases from real-time uWx data, retrieved

between 10 November and 5 December 2016. QC

checks, also noted above, were applied after bias

correction.

Figure 6 displays the distribution of uWx altimeter

MAE at different stages of postprocessing. Altimeter

MAE was computed, for each smartphone, from uWx

SPOs retrieved between 10 November and 5 December

2016. To ensure a sufficient sample size, altimeter MAE

was computed only for smartphones that retrieved at

least 50 SPOs over the 25-day analysis period. After bias

correction the median altimeter MAE decreased by

76% from 1.61 hPa to 0.38 hPa. When QC checks

were applied to bias-corrected SPOs, the skewness of

FIG. 4. (a) The 1-h pressure change observations from stationary uWx smartphones for 0600–1000 UTC 24 Oct 2016. Shading indicates

pressure rises (red) and falls (blue) over the previous hour. (b) Comparison between 1-h pressure change at 0900 UTC 24 Oct 2016 from

stationary uWx smartphones and METAR and Integrated MESONET stations in the MADIS network.
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altimeter MAE was substantially reduced and the

median MAE decreased to 0.28 hPa. Overall, bias cor-

rection and QC checks reduced the median and mean

altimeter MAE by 82% (from 1.61 to 0.28 hPa) and

85% (from 2.23 to 0.33 hPa), respectively.

Bias correction accounted for most of the reduction in

altimeterMAE, confirming the ability of random forests

to predict and correct pressure biases caused by eleva-

tion error and sensor bias. The success of random forest

bias predictions can be partly attributed to the fact that

many SPOs are retrieved at frequented locations, where

elevation errors are consistent and pressure biases are

more predictable. The conservative nature of sensor

biases also contributes to the success of random forest

bias predictions, which would suffer if the bias of indi-

vidual smartphone sensors was highly variable.

Figure 7 displays the spatial distribution of uWx altimeter

MAE used in Fig. 6. Since smartphones are mobile, altim-

eter MAE is plotted at the most frequent location of each

phone. Prior to bias correction, altimeter MAE is highly

variable throughout the domain. Post bias correction, a

dramatic reduction in altimeter MAE is observed, espe-

cially in the Seattle–Tacoma region QC checks filter out

poor-quality SPOs, enabling altimeter MAE to become

small and nearly uniform over the Seattle–Tacoma region.

In rural regions reductions in altimeter MAE are more

FIG. 5. The 15-min pressure change from stationary uWx smartphones during a convective event over Seattle. All

pressure change observations are binned into 10-min windows centered at the time of radar reflectivity retrieval, displayed

at the top each subplot. Shading indicates that pressure rises (red) and falls (blue) occurred over the last 15-min.
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modest, as QC checks are more lenient in rural regions

where observation density is low.

In numerical weather prediction, observations are

typically binned in fixed time windows for input into

ensemble data assimilation systems. To evaluate the

quality of SPOs for assimilation, SPOs retrieved be-

tween 10 November and 5 December 2016 were orga-

nized into hourly bins. The MAE of SPOs, at different

stages of postprocessing, was computed for each hourly

bin (Fig. 8a). It is important to clarify that in this figure,

unlike the previous two, SPO error is not averaged for

each smartphone. Instead the MAE is computed for all

SPOs (frommany smartphones) retrieved within a given

hour. Thus, Fig. 8a essentially displays the domain-

averaged SPO error for each hour. In this figure the

median hourly altimeter MAE, prior to bias correction,

was 1.83 hPa. Bias correction and QC checks reduced

the median hourly altimeter MAE to 0.51 and 0.3 hPa,

respectively. Over the 25-day period, the examined

hourly altimeter MAE of bias-corrected SPOs in-

creased by 0.0045hPa day21. Bias-corrected and quality-

controlled SPOs’ hourly altimeter MAE increased at a

slower rate of 0.003hPa day21. These findings suggest that

random forests should be retrained at least once per month

to prevent increases in hourly altimeter MAE from ex-

ceeding 0.1hPa. The positive trend in hourly altimeter

MAE may be a result of a gradual sensor drift. The trend

also may be attributed to the retrieval of smartphone

pressures at new locations, unseen during training, where

the value of ancillary features has no parallel in the training

dataset or where the pressure bias falls outside the range of

observed pressure biases during training.

In the time series of altimeter MAE (Fig. 8a), some

peaks are observed, mainly in the early evening, when the

number of SPOs is greatest. These peaks are the result of

outliers that skew the distribution of SPO error to the right.

Random forests are trained only on SPOs with absolute

pressure biases less than 10hPa. Thus, when an SPO is

retrieved in a high-rise building in downtown Seattle, sub-

stantial pressure biases, exceeding 10hPa, can result. Al-

though infrequent, SPOs are retrieved from commercial

aircraft and light rail, and thus they also contribute to the

peaks observed in the hourly altimeter MAE of bias-

corrected and uncorrected SPOs. Although random for-

ests were never trained to predict large pressure biases,

SPOs with substantial pressure biases still undergo random

forest bias correction, since at the time of bias correction

the true pressure bias of each SPO is unknown.

Figure 8b displays the hourly count of uWx SPOs, at

different stages of postprocessing. There is a diurnal

cycle in the observation count, since fewer SPOs are

retrieved overnight. At night smartphones are more

FIG. 6. the distribution of uWx altimeter MAE at different stages of postprocessing: no

correction, bias corrected, and bias corrected and passed QC. The altimeter MAE was com-

puted for each smartphone from uWx SPOs retrieved between 10 Nov and 5 Dec 2016.

Altimeter MAE was computed only for smartphones that retrieved at least 50 SPOs over the

25-day analysis period. Approximately 1974 smartphones satisfied this criterion.
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likely to be stationary. If a smartphone is stationary and

not charging, the Android operating system will reduce

the frequency of background tasks, including pressure

collection. On average 3469 SPOs are retrieved each

hour. Of these SPOs approximately 96.8% (3359) un-

dergo bias correction. Approximately 83.9% of SPOs

(2910) undergo bias correction and pass all QC checks.

In Madaus and Mass (2017), two-thirds of PressureNet

and WeatherSignal SPOs were rejected during post-

processing. By retaining four-fifths of all SPOs, uWx can

substantially reduce the MAE of SPOs without sacri-

ficing quantity for quality.

d. Feature importance

The previous section illustrated the effectiveness of

random forests in reducing altimeter MAE. To gain

more insight into how random forests predict pressure

biases, feature importance was evaluated for each uWx

random forest. The distribution of random forest feature

importance, for SPOs retrieved between 15 August and

9 November 2016, is displayed in Fig. 9a. It is notable

that no single feature dominates (i.e., no median im-

portance $ 0.5). The best predictor of pressure bias,

horizontal location (latlon), has a median importance of

0.18 on a normalized scale from 0 to 1. It is not surprising

that all features exhibit relatively low importance, since

random forests, by design, randomize the selection of

features at each step in each tree of the forest. This

method is designed to reduce overfitting by preventing

strong predictors of pressure bias, such as horizontal

location (latlon), from dominating decision trees in the

random forest.

FIG. 7. The spatial distribution of uWx altimeterMAE at different stages of postprocessing. The altimeterMAEwas computed for each

smartphone from uWx SPOs retrieved between 10 Nov and 5 Dec 2016. Those 1974 smartphones used to compute the distribution of uWx

altimeter MAE in Fig. 6 were used in this analysis.
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The rank (order) of feature importance is more sig-

nificant than its normalized value, since the ranking of

features reveals which features contribute the most to

random forest bias predictions. A frequency plot of

feature rank, for each feature, is displayed in Fig. 9b.

For 30% of all uWx smartphones, the most important

feature for predicting pressure bias is horizontal loca-

tion (latlon). Since elevation errors are a function of

FIG. 9. (a) Feature importance of uWx variables (features) used to train random forests over the period 15 Aug–9 Nov 2016. For each

phone, feature importance is estimated using the random forest generated for that phone. Each box plot displays the distribution of the

importance of featureX, for all uWx phones.Median importance is displayed in each box plot (white bisecting line). (b) Frequency plot of

feature rank from most important (rank 5 0) to least important (rank 5 12). For all uWx phones, feature importance was sorted and

arranged in descending order. The frequency at which each feature was ranked X is plotted on the vertical axis.

FIG. 8. (a) Time series of uWx hourly altimeterMAE at different stages of postprocessing over the period spanning 10 Nov–5Dec 2016.

Hourly altimeter MAE is computed from SPOs collected each hour. Ordinary least squares (OLS) regression was performed for each

hourly altimeter MAE time series. (b) Time series of uWx hourly observation count at different stages of postprocessing. Hourly ob-

servation counts represent the number of SPOs retrieved within a given hour.
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horizontal location and ground elevation, it is not sur-

prising that both features (latlon and elev) are the top-

ranked feature for over 50% of smartphones. It is

interesting to note that for a small fraction of uWx

smartphones, features such as elevation variance (estd),

significant motion (motion), and GPS speed (speed) are

the top ranked feature. The first four top-ranked fea-

tures (latlon, elev, alts, and pres) are correlated and thus

convey similar information content. If only one or two of

these features were used, a single feature could domi-

nate over the others. While seemingly repetitive, the

inclusion of these four features contributes to the ro-

bustness of random forests by increasing the diversity of

individual trees.

e. Sensitivity to training period and feature selection

To evaluate how the size of the training sample affects

bias prediction error, random forests were trained on

uWx data of variable sample sizes. Specifically, a col-

lection of random samples was retrieved from uWx

smartphones that collected at least 1000 observations

between 15 August and 15 November 2016. Approxi-

mately 1139 uWx smartphones met this criterion. The

samples collected from these smartphones were used to

train and verify random forests during fourfold cross vali-

dation. The predicted pressure bias and true pressure bias,

calculated using the MADIS interpolation technique out-

lined above, were used to compute the RMS error of bias

predictions. This error was computed from verification

data not used during training. Figure 10 displays the RMS

error of predicted pressure biases for uWx smartphones

as a function of sample size. As the sample size increased,

the skewness of the RMS bias prediction error decreased.

With more samples available for training, random forests

were more robust to outliers.

Several experiments were performed to examine the

impact of feature selection on random forest bias pre-

diction. These experiments utilized the same set of uWx

smartphones used to test the sensitivity of random for-

ests to training size. For the baseline experiment, feature

selection was limited to horizontal location and eleva-

tion—the two most frequently top-ranked features for

bias prediction (Fig. 9b). Additional experiments ex-

panded feature selection to include pressure, altimeter

setting, and all available features. For each experiment,

random forests were trained and cross validated over the

3-month period spanning 15 August to 15 November

2016. The average percentile error of bias prediction was

computed by averaging the Nth percentile of bias pre-

diction error for all uWx random forests (smartphones),

trained with a particular feature set. The average per-

centile error difference between random forests trained

with each feature set is displayed in Fig. 11. A negative

error difference implies bias prediction errors were re-

duced relative to the baseline experiment.

The addition of pressure, altimeter setting, and an-

cillary features improves the average percentile error of

bias prediction, most notably in the right tail of the

distribution. Substituting pressure and elevation with

altimeter setting yields weaker improvements in bias

prediction than including pressure and elevation, even

though altimeter setting is a function of both. As noted

previously, training random forests with fewer features

results in greater similarity among trees, which con-

tributes to overfitting. Adding additional features in-

creases the diversity of trees within the random forest,

reducing correlations between trees and ensuring a

more robust fit to outliers. For this reason, the greatest

reductions in bias prediction error are observed at

higher percentiles when random forests are trained us-

ing all features, even those with low overall importance.

5. Discussion

Convection-allowing numerical weather prediction

demands observing networks with high spatiotemporal

density for initialization and verification. uWx demon-

strated that, through in-app QA procedures and bias

correction, the quality of SPOs could be substantially

improved without sacrificing their observation density.

This result is encouraging for the utility of SPOs in nu-

merical weather prediction, which has been limited by

poor data quality (Madaus and Mass 2017). Prior at-

tempts at improving the quality of SPOs overlooked

sources of SPO error and relied on pressure data from

preexisting surface observing networks (Kim et al. 2015;

Kim et al. 2016; Madaus and Mass 2017). This study is

the first to analyze sources of SPO error and demon-

strate that, after a short training period, SPOs can be

bias corrected in real time, using only data retrieved

from the smartphone.

In numerical weather prediction, data assimilation

systems require estimates of observational uncertainty to

weight the influence of observations on the model. While

considerable effort has been made in quantifying model

uncertainty, less attention has been given to observa-

tional uncertainty. In ensemble data assimilation, pres-

sure error variances are often assumed to be static

(Wheatley and Stensrud 2010;Madaus et al. 2014; Sobash

and Stensrud 2015; Madaus and Mass 2017), since error

statistics for individual observations are typically un-

known. In uWx, sensor noise, elevation uncertainty,

pressure bias uncertainty, and the bias prediction RMS

error can be used to estimate an observation error vari-

ance, unique to each SPO. By quantifying uncertainty,

uWx SPOs can be weighted by their relative accuracy,
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enhancing data assimilation and increasing their potential

for numerical weather prediction.

Bias correction using machine learning represents the

biggest computation challenge for large-scale pressure

collection. Currently, uWx generates random forests

for every smartphone on a remote server during post-

processing. On a midrange Intel CPU (e.g., Intel Xeon

E5-2620 version 2 at 2.10GHz), it takes ;5 s to train a

FIG. 10. RMS phone bias prediction error for random forests as a function of cross-validation

sample size for 1139 smartphones. Shown are the median (solid line), the 10th (lower dashed

line) and 90th percentiles (upper dashed line) of the bias prediction error, and the IQR of bias

prediction error (shaded region).

FIG. 11. Sensitivity of pressure bias prediction error to feature selection. Percentiles of

pressure bias prediction error are computed for each smartphone. TheNth percentile of pressure

bias prediction error is averaged across 1139 uWx smartphones. This procedure is performed for

random forests trained with different sets of features. As a baseline, random forests are trained

using only location data (latlon and elev).The average percentile error difference between ran-

dom forests trained with each feature set and this baseline is displayed above.
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random forest, over a 3-month period, on a single CPU

thread.At this rate itwould take;1400processors to train a

million random forests in an hour. One possible solution

involves leveraging the massive parallel architecture of

graphics processing units (GPUs) to perform bias correc-

tion for many smartphones simultaneously. Another more

scalable approach would involve performing in-app bias

correction by embedding the random forest algorithm into

the app code. While this approach is promising, the prac-

ticality of performing machine learning in app remains

unclear and is a topic of future research.

6. Conclusions

Pressure observations acquired from millions of smart-

phones have the potential to provide dense surface obser-

vations around the world. Previously, inconsistent data

quality from smartphone pressures undermined the appli-

cationsof suchobservations innumericalweatherprediction.

However, if the data quality can be improved, the smart-

phone pressures could enhance numerical weather pre-

diction by providing unprecedented observational coverage

anddensity. This study attempts to confront this challengeby

developing new approaches to quantify uncertainty and to

reduce error in smartphonepressures. To act as a test bed for

pressure collection and QA procedures, a crowdsourcing

pressure app, uWx, was developed. Among the innovations

in uWx was the extension of the sensor listening period,

which mitigated error caused by a failure to account for

sensor filtering. Location accuracy was also improved by

mandating the use of the GPS during location retrieval, re-

ducing the magnitude of position and elevation errors.

Although QA procedures were successful in mitigating

error associated with collection and location problems,

pressure biases persisted as sensor bias and vertical ele-

vation errors remained unaccounted for. Since traditional

QC techniques failed to produce the desired results, a

machine learning approach using random forests for

postprocessing smartphone pressures was developed. This

approach, in combinationwith simpleQCchecks, reduced

the mean smartphone pressure bias by 82%.Remarkably,

improvements in data quality were gained at little expense

to data quantity. On average, 84% of SPOs underwent

bias correction and passed all QC checks.

Asmoremeteorological sensors are embedded in devices,

vehicles, buildings, and other items, the potential for crowd-

sourced weather observations will grow. This study demon-

strates that pressure biases in crowdsourced data from

mobile platforms can be predicted and removed, facilitating

their use in numerical weather prediction. This work also

demonstrates the substantial promise of machine learning

techniques for enhancing the value of observations. In a

sister study, ensemble data assimilation experiments with

crowdsourced uWx pressures will be used to quantitatively

examine whether SPOs can improve mesoscale forecasts.
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